Edward Boyden, MIT McGovern Institute, “Tools for Mapping Brain Computations”

Jump to:

Bio

“Tools for Mapping Brain Computations”

Ed Boyden is Associate Professor of Biological Engineering and Brain and Cognitive Sciences, at the MIT Media Lab and the MIT McGovern Institute. He leads the Synthetic Neurobiology Group, which develops tools for analyzing and engineering the circuits of the brain. These technologies, created often in interdisciplinary collaborations, include ‘optogenetic’ tools, which enable the activation and silencing of neural circuit elements with light, 3-D microfabricated neural interfaces that enable control and readout of neural activity, and robotic methods for automatically recording intracellular neural activity and performing single-cell analyses in the living brain. He has launched an award-winning series of classes at MIT that teach principles of neuroengineering, starting with basic principles of how to control and observe neural functions, and culminating with strategies for launching companies in the nascent neurotechnology space. He also co-directs the MIT Center for Neurobiological Engineering, which aims to develop new tools to accelerate neuroscience progress.

For more information on Dr. Boyden, click here to view his webpage.

Click here to view webcast.Click here to view webcast.

Abstract

“Tools for Mapping Brain Computations”

The brain is a complex, densely wired circuit made out of heterogeneous cells, which vary in their shapes, molecular composition, and patterns of connectivity. In order to help discover how neural circuits implement brain functions, and how these computations go awry in brain disorders, we invent technologies to enable the scalable, systematic observation and control of biological structures and processes in the living brain. We have developed genetically-encoded reagents that, when expressed in specific neuron types in the nervous system, enable their electrical activities to be precisely driven or silenced in response to millisecond timescale pulses of light. I will give an overview of these “optogenetic” tools, adapted from natural photosensory and photosynthetic proteins, and discuss new tools we are developing, including molecules with novel color sensitivities (e.g., Chrimson, Jaws) and other unique capabilities (e.g., Chronos). We are also developing optogenetic tools that enable activation of endogenous protein and signaling pathways (e.g., lumitoxins). Often working in interdisciplinary collaborations, we have developed microfabricated hardware to enable complex and distributed neural circuits to be controlled and observed in a fully 3-D fashion, as well as robots that can automatically record neurons intracellularly and integratively in live brain, and strategies for building 3-D brain circuits in vitro. These tools are in widespread use to enable systematic analysis of neural circuit functions, are also opening up new frontiers on the understanding and treatment of brain disorders, and may serve as components of new platforms for diagnosing and treating brain disease.

 

JHU - Institute for Computational Medicine