Tom Shannon, Rush University, “Mathematical and Experimental Studies Addressing the Role of Diastolic Ca Release in Cardiac Excitation-Contraction Coupling”

Jump to:

Seminar Abstract

“Mathematical and Experimental Studies Addressing the Role of Diastolic Ca Release in Cardiac Excitation-Contraction Coupling”

Cardiac excitation-contraction coupling is initialized by the release of Ca from the sarcoplasmic reticulum (SR) in response to a sudden increase in local cytosolic [Ca] ([Ca]i) within the junctional cleft. We have tested the hypothesis that functional ryanodine receptor (RyR) regulation plays a major role in the regulation of myocyte Ca. A mathematical model with unique characteristics was used to simulate Ca homeostasis. Specifically, the model was designed to accurately represent the SR [Ca]-dependence of release from a variety of experimentally produced data sets which I will present. The simulated data for altered RyR Ca sensitivity demonstrated a regulatory feedback loop that resulted in the same release at lower [Ca]SR. This suggests that the primary role of myocyte RyR regulation may be to decrease SR [Ca] without decreasing the size of the [Ca]i transient. The model results suggest that this action moderates the increased SR [Ca] observed with adrenergic stimulation and may keep the [Ca]SR below the threshold for delayed afterdepolarizations and arrhythmia. However, increased Ca affinity of the RyR increased the probability of delayed afterdepolarizations when heart failure was simulated. We conclude that RyR regulation may play a role in preventing arrhythmias in healthy myocytes but that the same regulation may have the opposite effect in chronic heart failure.

 

JHU - Institute for Computational Medicine